

Bariloche, Argentina

# Exitosa aplicación de bomba multifásica de fondo en pozo con alto índice de intervenciones

**Autores:** 

Karina Alvarez (YPF SA)

Esteban Young (PCP Oil Tools SA)





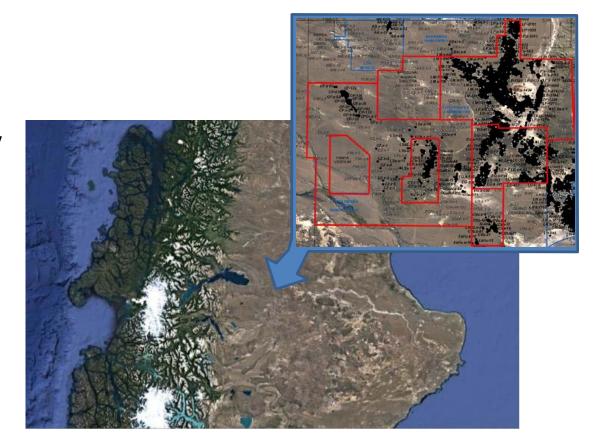
# Índice

| Contexto general y zonal    |
|-----------------------------|
| Problemática del pozo       |
| Características de la HRPCP |
| Antecedentes en Santa Cruz  |
| Analisis previos            |
| Seguimiento, Resultados     |
| Recomendaciones             |
| Conclusiones                |



# Contexto Regional

### **NEGOCIO Santa Cruz Oeste**


El Negocio cuenta con 4 Activos de Producción: LP 1, LP2, EG-LC y CY

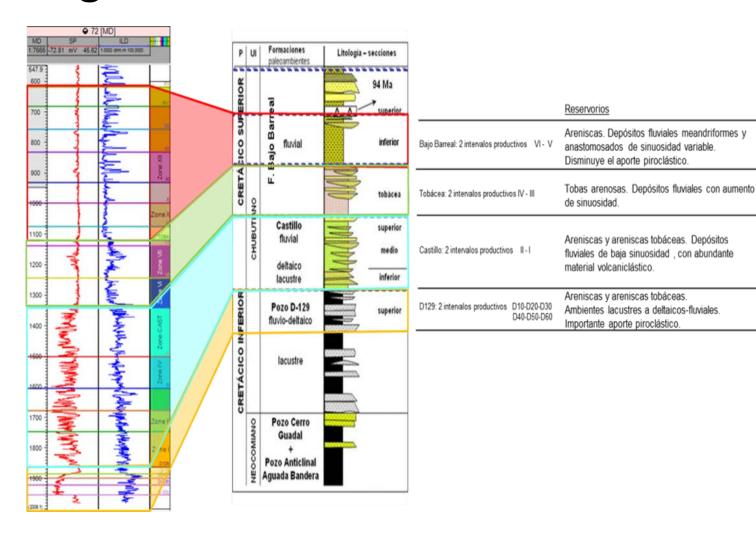
Pozos Productores

• 2835

**PCP** instaladas

• 291



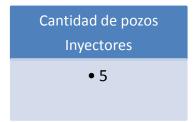




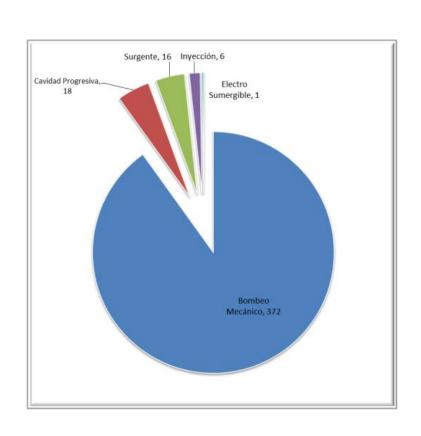

24 · 27 Octubre 2016
Llao Llao Hotel&Resort

Bariloche, Argentina

# Geología del área






# Activo Cañadón Yatel





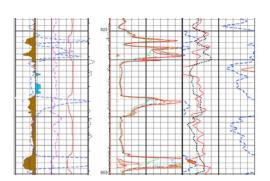
Pozos perforados por año 20







# Características del Pozo


- Pozo con alta relación gas líquido (GLR 720m3/m3) y arena
- Fallas recurrentes con Bombeo Mecánico y PCP convencional
- 1% sólidos según muestra 02/03/2016
- Según cromatografía realizada el 05/06/2015 el gas no presenta CO2
- 20°API
- Viscosidad hidratada:

> 50°C: 435cps

➤ 60°C: 288cps

> 70°C: 191cps

Según el perfil eléctrico presenta un pequeño cruce de gas en la capa 847/49 m.



Según las correlaciones con pozos aledaños: alta probabilidad de que se esté manifestando gas por las siguientes capas: 1708/10 m; 1652,5/55,5 mREP.





# Esquema de Producción

Superficie

-Cabezal

-Motor

-Rod Clamp



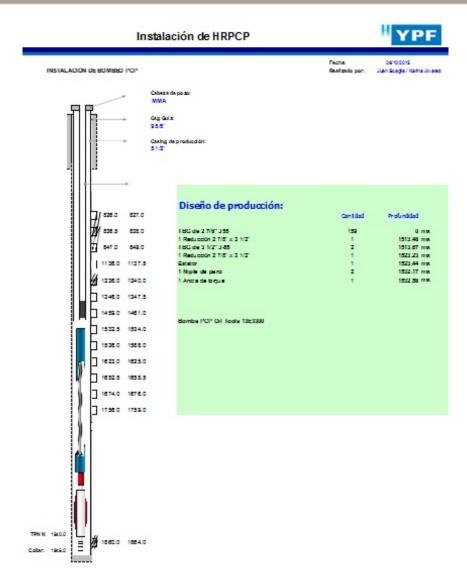
-Tablero con Variador de Velocidad



-Data Logger

- Fondo
- -Cupla rotor -Reducción
  - -Neducción
  - -Niple espaciador -Bomba HR 13E3300
- -polling LIV 19599
  - -Niple de paro
- -Reducción
- -Ancla

### Referencias


Industria Nacional



Integración Nacional









# Problemática del pozo

### Sistema de extracción BM: 5 intervenciones en 6 meses



### Sistema de extracción PCP: 3 intervenciones en 7 meses



Hinchamiento y descompresión explosiva

Endurecimiento del elastómero – dureza Shore A 90





### Premisas del Protocolo de Ensayo

### 5. ENSAYO

El resultado del ensayo se considerará exitoso si se cumplen las siguientes metas:

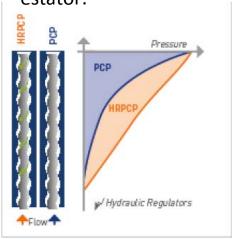
- **5.1.** Entrega de la documentación relevada y registrada indicada en las consideraciones previas en tiempo y forma.
- **5.2.** Prestación de una disponibilidad operativa no menor al 99% del tiempo total del ensayo, admitiendo un máximo de 29 (veintinueve) horas de parada de equipo. Se considerará indisponibilidad del equipo a toda falla inherente a la unidad que implique perder la capacidad de bombeo.
- **5.3.** Se considera en primera instancia exitosa la evaluación si el/los equipos instalados superan los 6 meses de marcha normal , este tiempo es el primer objetivo a alcanzar y corresponde al tiempo entre intervenciones del/los pozos con el sistema de extracción actual

### 6. RESPONSABILIDADES

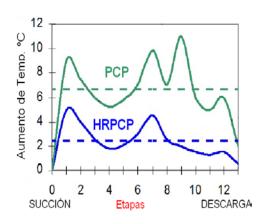
### 6.1. INGENIERO DE PRODUCCIÓN

### Responsabilidades

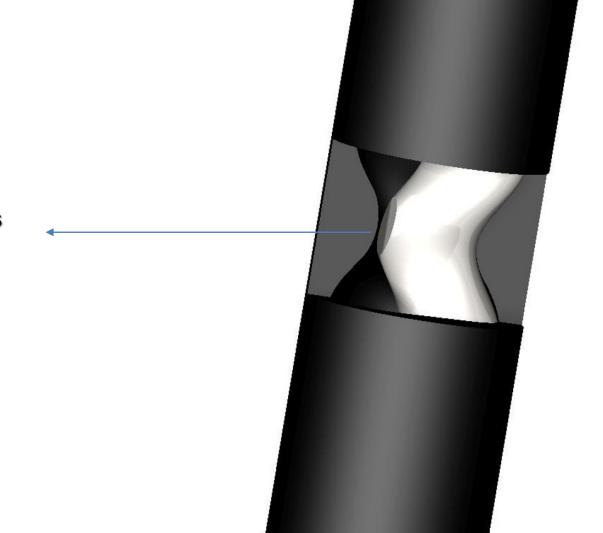
Realizar una muestra en boca de pozo por día y enviarla a laboratorio para evaluar la evolución del contenido de sólidos y fluidos del pozo. Asimismo se enviará un reporte diario de parámetros de sumergencia, RPM, Consumo eléctrico, Torque. Estos datos se enviarán hasta tanto y cuanto se determinen parámetros de sumergencia y aporte de sólidos estabilizados (Sumergencia 200 m y Sólidos < 10 ppm).







# Solución - HR PCP

- Pozos con alto GLR y arena o petróleo viscoso
- Única PCP autorregulable del mercado
- Triplica la vida útil de una PCP convencional en condiciones multifásicas
- Distribución de presión uniforme entre etapas y menor aumento de temperatura interna en el estator

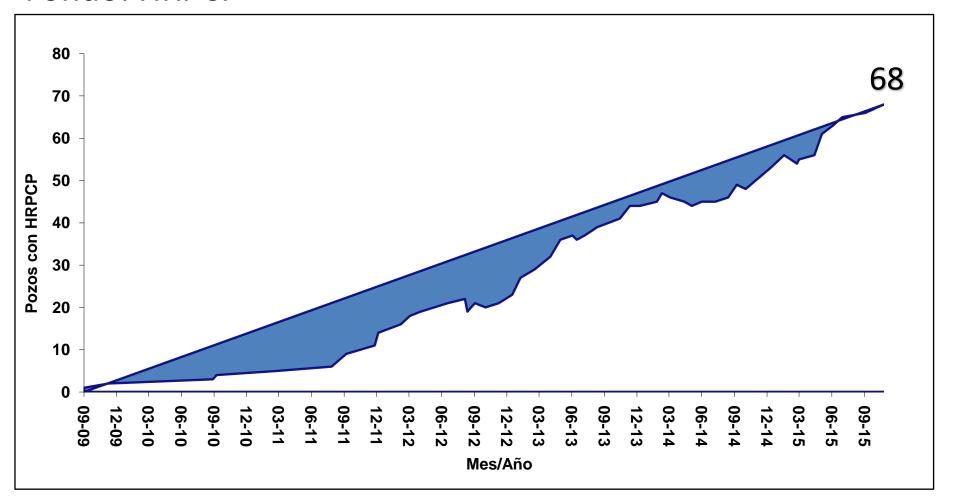

# Distribución de presión en el estator:



Distribución de temperatura en el estator:








Reguladores Hidráulicos





# Antecedentes en Santa Cruz de Bombeo Multifásico de Fondo: HRPCP



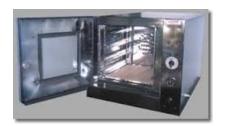




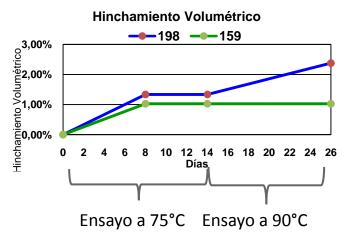
# Análisis de compatibilidad

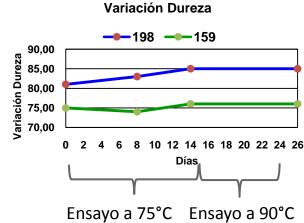
- Propiedades mecánicas:
  - por la profundidad de instalación (1530m) se necesita un compuesto con buenas propiedades mecánicas
- Descompresión explosiva:
  - dada las reiteradas fallas presentadas por la presencia de gas, una de las claves para que la aplicación tuviera éxito era seleccionar un compuesto con buena performance en presencia de gas
- Resistencia a la abrasión:
  - 2 de las 3 PCP fallaron por gas y presencia de arena, por lo que se requería un compuesto resistente a la abrasión
- Temperatura máxima:
  - El elastómero a seleccionar debía soportar al menos 90°C

|                                       | NBR                                                | HNBR                                                        |
|---------------------------------------|----------------------------------------------------|-------------------------------------------------------------|
| PCM Compound                          | 159                                                | 198                                                         |
| Hardness                              | hard                                               | hard                                                        |
| Maximum imposed<br>temperature (°C/F) | 125 / 260                                          | 150 / 300                                                   |
| Mechanical properties                 | + + +                                              | + +                                                         |
| Abrasion resistance                   | +                                                  | + +                                                         |
| Light Aromatic resistance             | +                                                  | -                                                           |
| H <sub>2</sub> S resistance           | -                                                  | +++                                                         |
| CO <sub>2</sub> resistance            | 0                                                  | + +                                                         |
| Explosive decompression resistance    | + +                                                | -                                                           |
| Use conditions:                       | Best<br>elastomer for<br>non<br>aggressive<br>oils | Better H <sub>2</sub> S<br>and<br>temperature<br>resistance |


+ + + : Excellent + + : Very good

+: Good 0: Fair -: Poor




# Análisis Previos de compatibilidad: Resultados









| Compuesto | Propiedades<br>Mecánicas | Resistencia a la<br>Descompresión<br>explosiva | Resistencia a la abrasión | Resistencia a la temperatura | Total |  |
|-----------|--------------------------|------------------------------------------------|---------------------------|------------------------------|-------|--|
| 159       | 5                        | 4                                              | 3                         | 4                            | 16    |  |
| 198       | 4                        | 1                                              | 4                         | 5                            | 14    |  |







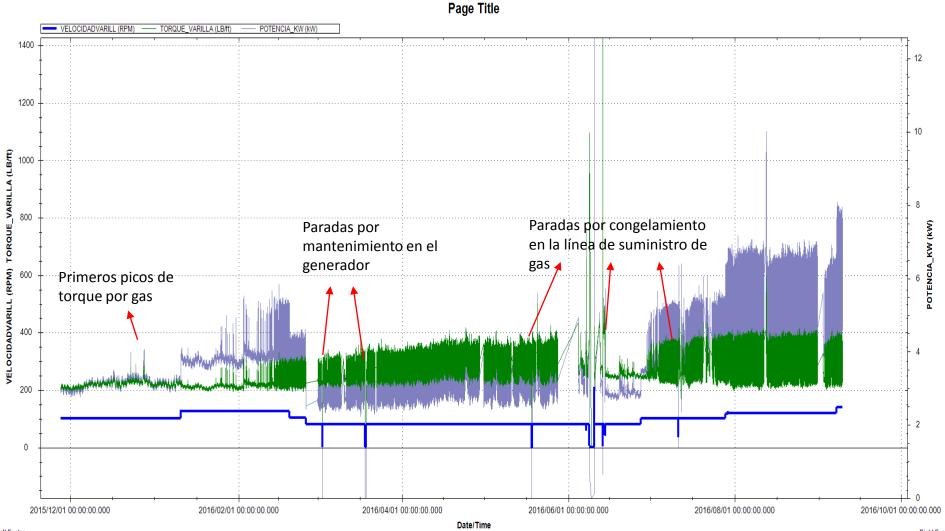


# Análisis Previos de compatibilidad: Resultados

Realizando la conversión del porcentaje molar de CO2, a presiones parciales, se descarta posibilidad de corrosión en el sistema.

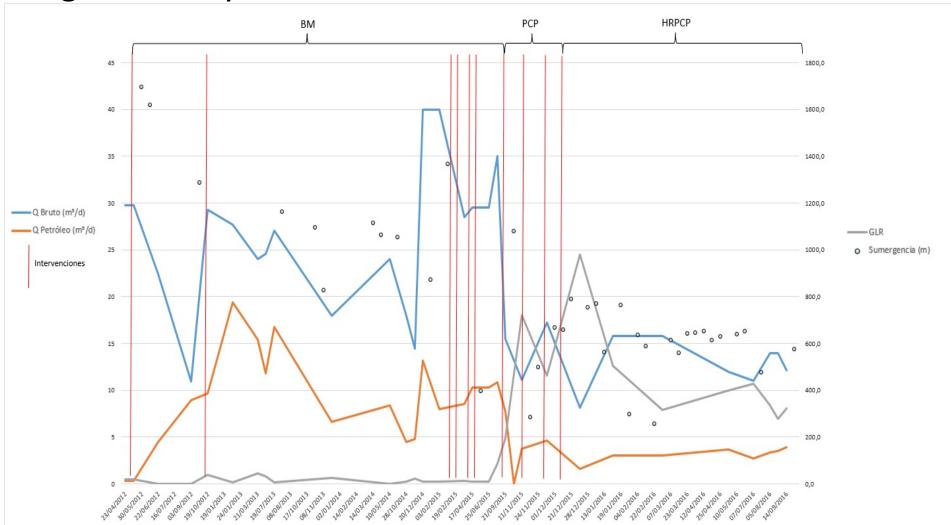
0.01 % Molar CO2 equivale a Pparcial 0.39 psi Esta Pparcial es un parámetro utilizado para evaluar la corrosión.

Pp CO2 < 7 psi Corrosión poco probable 7 psi < Pp CO2 < 30 psi Corrosión posible Pp CO2 > 30 psi Corrosión


| Unidad Economica SAN                  | ITA CRUZ Con             | venio N° 4 | 900066806 |           |          |                             |             |
|---------------------------------------|--------------------------|------------|-----------|-----------|----------|-----------------------------|-------------|
| Muestra de :                          | Gas                      |            |           |           |          | Protocolo Nº:               | 0704 - 15 ( |
| Punto de Muestreo :                   | Pozo ECH-69              |            |           |           |          | Fecha de Extraccion :       | 20-05-15    |
| Solicitado por :                      | Sr. Avendaño             | , Manuel-  | YPF       |           |          | Fecha de Recepcion : 05-06- |             |
| Extraido por :<br>Análisis :          | Petromark<br>Cromatograf |            |           |           |          | Fecha de Informe :          | 05-06-15    |
|                                       |                          |            |           |           |          |                             | _           |
| Distrito C.C - PEP                    | Item<br>Cantidad         | 690        | 710       | 720       | 730      |                             | _           |
|                                       |                          |            |           |           | _        | ATOGRAFICO                  | _           |
|                                       |                          |            |           |           |          |                             |             |
|                                       | _                        | MPONEN     | _         |           |          | % MOLAR                     |             |
|                                       |                          | ROGENO (N  |           |           |          | 2,31<br>0,02                |             |
| OXIGENO (O2) DIOXIDO DE CARBONO (CO2) |                          |            |           |           | 0,02     |                             |             |
| DIOXIDO DE CARBONO (CO2) METANO (CH4) |                          |            |           |           | 86,53    |                             |             |
| ETANO (CH4)                           |                          |            |           |           | 4.93     |                             |             |
|                                       | PRO                      | DPANO (C3H | 18)       |           |          | 2,74                        |             |
|                                       | ISO-B                    | UTANO (iC4 | H10)      |           |          | 0,59                        |             |
|                                       | NORMAL                   | -BUTANO (  | nC4H10)   |           |          | 1,12                        |             |
|                                       | ISO-PE                   | NTANO (iC  | 5H12)     |           |          | 0,33                        |             |
|                                       |                          | PENTANO (  |           |           |          | 0,48                        |             |
|                                       |                          | KANO (C6H) |           |           |          | 0,45                        |             |
|                                       |                          | TANO (C7H  |           |           |          | 0,29                        |             |
| OCTANO (C8H18)                        |                          |            |           |           | 0,17     |                             |             |
| NONANO (C9H20)                        |                          |            |           |           | 0,03     |                             |             |
|                                       |                          | TOTAL      |           |           |          | 100,00                      |             |
|                                       |                          |            |           | IEDADES F | ISICAS   |                             |             |
|                                       |                          | LECULAR (  |           |           |          | 19,72                       |             |
| VOLUMEN MOLAR (m3/Kmol)               |                          |            |           |           | 23,65    |                             |             |
| DENSIDAD ABSOLUTA DENSIDAD RELATIVA   |                          |            |           |           | 0,83     |                             |             |
| PODER CALORIFICO SUPERIOR (Kcal/m3)   |                          |            |           |           | 10420,27 |                             |             |
| PODER CALORIFICO SOPERIOR (ACM/MS)    |                          |            |           | 9434,84   |          |                             |             |
|                                       |                          | E COMPRES  |           |           |          | 1,00                        |             |
|                                       |                          | ATURA CRIT |           |           |          | 208,87                      |             |
|                                       |                          | ON CRITICA |           |           |          | 45,11                       |             |






# Seguimiento y Resultados







# Seguimiento y Resultados







Llao Llao Hotel&Resort Bariloche, Argentina

### Recomendaciones

• Evaluar junto a:

geólogos y reservoristas, las características del pozo (Formaciones punzadas y/o fracturadas, correlaciones con pozos vecinos). Identificar zonas de posible aporte de sólidos.

supervisores de producción: comportamiento del pozo mientras está en producción (mediciones físicas, controles de fluidos, verificando aporte de sólidos etc)

- Analizar operaciones realizadas en cada una de las intervenciones.
- Tomar decisiones en función a los informes aportados por la contratista, referentes a las fallas halladas.
- Realizar en todos los pozos análisis completos y cromatografías de las muestras, verificando siempre presiones parciales.
- Realizar los estudios de compatibilidad.
- Simular el equipo
- Prever cambio del comportamiento del pozo.





### Conclusiones

- **EFICIENCIA:** La HRPCP ha demostrado ser el sistema más adecuado para la aplicación del Pozo Seleccionado. Tanto el Bombeo Mecánico como la PCP convencional no permitían una producción estable producto de la presencia de gas y arena en el pozo.
- **ROBUSTEZ:** El equipo tuvo varias paradas producto de mantenimiento en el generador o problemas por congelamiento de la línea de suministro de gas y en cada uno de los re arranques la bomba volvió a ponerse en marcha sin inconvenientes.
- BAJO IMPACTO AMBIENTAL: Debido a bajos: impacto visual, mantenimiento, nivel de ruido, y apto para zonas urbanas y sensitivas al ruido.
- MAYOR CAPACIDAD DE DISIPAR CALOR: Al ser apta para un mayor porcentaje de gas libre, no se ve afectada su eficiencia volumétrica.
- Posibilidad de utilizar varillas de bombeo, condición C.





### **MUCHAS GRACIAS! PREGUNTAS?**