

H₂S Control via Downhole Injection of a New, Non-Scale Forming H₂S Scavenger

Lonza South America Patagonia – Oct. 2016

Lonzd

Presentation Outline

Considerations for choosing the appropriate H₂S scavenger
 Triazine vs New H₂S scavenger
 Modeling the H₂S scavenging reaction - the importance of understanding kinetics for optimization

optimization

Field results

Desired Characteristics of a Chemical H₂S Scavenger

- Complete reaction with H₂S
- Known reaction rates fast enough to react in the desired timeframe of the system
- Applicable to gas, oil, and / or co-produced fluids
- Scavenges over a wide pH and temperature range
- Non-corrosive chemical
- Does not form solids (e.g., scale deposits)

Triazine Derivatives Performance Characteristics

- Rapid reaction with H₂S to form primarily mono- and dithiazines
- React to completion without re-release of H₂S
- Strong performance for gas sweetening applications
- Extensive field experience
- Potential to form Ca²⁺ and Ba²⁺ scale in aqueous / produced water applications
- Ineffective at low pH and low T
- Has potential to forms oligomeric dithiazine / polysulfide solids
 - Taylor, G.N., et al Ind. Eng. Chem. Res., 2011, 50, 735
 - Madsen, H.T. "Investigation of Fouling Formation During H2S Scavenging with 1,3,5tri-(2-hydroxyethyl)-hexahydro-s-triazine", Master's Thesis, Aalborg University, June 2011

Triazine Derivate Reaction of Triazine with H₂S is Strongly pH-Dependent

Accounting for triazine pKa, scavenging rates decrease at lower pH

*Data fit according to experimental results in Buhaug, J.; Bakke, J.M. AIChE Spring National Meeting 2002, 151

Nov-16

Lonza

Triazine Derivatives Competitive Hydrolysis of Triazine at Lower pH Rationalizes Oligomer Formation of Triazines

At pH <7.4, hydrolysis is faster than scavenging</p>

>100 times faster at pH <6.5</p>

Triazine Derivatives Competitive Hydrolysis of Triazine at Lower pH Rationalizes Oligomer Formation of Triazines

General mechanism of oligomer formation is justified

Taylor, G.N., et al Ind. Eng. Chem. Res., 2011, 50, 735

Triazine Derivatives Amine Chemistry can Increase pH and Scale Potential

New H₂S Scavenger

LONZC

New H₂S Scavenger Performance Characteristics

Reacts to completion with H₂S over a wide T range

- Even at lower T (< 25 °C)</p>
- Predictable H₂S Scavenging rate no pH dependence
- Scavenging rate unaffected by CO₂
- Does not increase water pH
 - reduced scale risk relative to Triazines
- Non-hazardous, non-corrosive chemical

New H₂S Scavenger Reaction with H₂S Proceeds to Completion in Aqueous Solution

Pseudo-1st Order Reaction Rates at pH 5, T = 22 °C

New H₂S Scavenger Reaction with H₂S is Independent of pH

Pseudo-1st Order Reaction Rates and ½ lives

рН	Temp (°C)	Scavenging Rate Constant k _{obsd} (min ⁻¹)	Half-life (min)
5.0	22	1.11 x 10 ⁻²	62
7.2	22	1.30 x 10 ⁻²	53
8.4	22	1.56 x 10 ⁻²	44
9.4	22	1.24 x 10 ⁻²	56
5.0	40	4.68 x 10 ⁻²	15
6.1	40	4.77 x 10 ⁻²	15

near zero slope indicates that the reaction of H2S with the new scavenger product is not pH dependent, in contrast with the reaction of H2S with triazines

The lack of dependence on pH suggests that H2S scavenging the new scavenger product could be more versatile for a variety of applications

New H₂S Scavenger Temperature Dependence of the Reaction with H₂S

- Pseudo-1st Order Reaction Rates at pH 5, T = 22 °C
- Negative entropy is consistent
 - indicates that the rate is very temperature dependent.
 - allows for additional prediction of H2S scavenging rates over a broader range of temperatures.
 - H2S scavenging rate increases dramatically with increasing temperature...... But
 -The scavenging rate is still rapid even at lower temperatures

Temp (°C)	Scavenging Rate Constant <i>k_{obsd}</i> (min ⁻¹)	Half- life (min)
-5	1.00 x 10 ⁻³	691
10	4.42 x 10 ⁻³	157
25	1.69 x 10 ⁻²	41
40	5.67 x 10 ⁻²	12
55	1.71 x 10 ⁻¹	4.1
70	4.69 x 10 ⁻¹	1.5
85	1.18	0.6

New H₂S Scavenger is

Not Amine Based and Does Not Generate Scale Deposits like Triazine

- 50 ppm as H_2S
- pH_o = 7.4
- 800 ppm Hardness (as CaCO₃)
- 1% TDS

New H2S Scavenger Solubility Profile of the Reaction Product

- By product solubility
 - Decrease with increase TDS
 - Non change to T
 - Moderately sensitive to P

New H₂S Scavenger

Scavenging by-products are water soluble

- Experiment #1 Static Test
 - No water insoluble products generated during typical treatment residence times (4 – 24 hr)
 - 300 ppm as H₂S(aq)
 - Equates to1,350 ppm $H_2S(g)$ at $pH_0 = 8.2$
 - 1,000 ppm New H₂S Scavenger

Lonza Internal Data

16 Nov-16

New H₂S Scavenger

Scavenging by-products are water soluble

- Experiment #2 Purge Test
 - No water insoluble products generated during typical treatment residence times (4 – 24 hr)
 - 100 ppm as H₂S(g) gas purge through a 500 ppm New H₂S Scavenger Solution

t = 4 hr

New H₂S Scavenger Brine Compatibility

New H₂S Scavenger is highly soluble in brines, even up to 33% (330,000 ppm)

Prediction of Chemical H₂S Scavenger Use in a Production System

LONZC

System Modeling for H₂S Scavenging

Scavenging is a Function of:

- Overall H₂S within the system
- System Parameters
 - Production levels Gas (MSCF), Oil (BOPD), Water (BWPD)
 - Flow velocity
 - Mixing Dynamics
- Modeling Requires a Few Inputs & Assumptions
 - Gas / Water and Oil / Water Partitioning
 - Reaction rate of the scavenger within each / the appropriate phase
 - Estimate of the boundary layer thickness between the gas and liquid

Basic Mass Transfer Model Utilized

Physical Mass Transfer followed by Irreversible Reaction

- Diffusion to the boundary layer
- Mass transfer across the layer
- Reaction with the scavenger in the layer and in the bulk solution

Modeling Scavenging Under Field Conditions

- Thermodynamic Parameters for Partitioning of H₂S
 - K_{gw} = 428 (Kgw = χ H2Sg / χ H2Saq)
 - $K_{ow} = 17$, (Kow = χ H2Soil / χ H2Saq)
 - $K_{qo} = 25$ (Kgo = χ H2Sg / χ H2Soil)
 - Where χH2S*i* = mole fraction of H2S in phase *i*. *
 - First-order reaction with scavenger in the layer and in the bulk solution

Kinetic Parameters for Scavenging

- Diffusion of $H_2S 1.60 \times 10^{-5} \text{ cm}^2/\text{sec}$ in water
- Equation and reaction rates with scavenger in the layer and in the bulk solution
- Fluid Velocity and Distance

Fit of Model to Field Trial Data with the New Scavenger – Example A

- Kinetic Parameters
 - Pseudo first-order reaction with scavenger in the layer and in the bulk solution
- Production Levels Field A
 - 250 MSCF / day
 - 40 BWPD
 - 415 BOPD
 - 150 $ppm_v H_2S$ baseline level
- Reduced to 10 ppm_v H₂S with 18 gpd Scavenger

Fit of Model to Field Trial Data with the New Scavenger – Example A

- Model shows a reasonable fit to the measured data
 - Overall mass transfer is slower than reaction
 - Reaction increase mass transfer slightly
 - Hatta number (H_a) ~
 1.49

Lonza

Fit of Model to Field Trial Data with the New Scavenger – Example B

- Production Levels Field B
 - 240 MSCF / day
 - 90 BWPD
 - 240 BOPD
 - 2200 ppm_v H₂S baseline level
- Reduced to 10 ppm_v H₂S with 30
 Scavenger
 - Downhole injection utilized

Comparison of the Model and Field Performance

Model provided a recommended dose rate consistent with actuals

System	Initial H ₂ S _g (ppm _v)	Target H ₂ S _g (ppm _v)	Final H ₂ S _g (ppm _v)	Scavenger Dose Rate (model)	Scavenger Dose Rate (actual)
Oilfield A Ha ~ 1.49	150	<20	10	1.5 gpd (5.7 lpd)	2 gpd (7.6 lpd)
Oilfield B Ha ~ 1.20	2,200	<20	10	19 gpd (72 lpd)	26 gpd (99 lpd)

• Typically Ha > 2 = scavenging reaction = near the gas liquid phase

• Tipically Ha < 0.2 = scavenging reaction = within the water phase

This shows that the chemical dose effectively creates a pseudo-first order reaction rate within the water phase that makes the scavenging reaction competitive with mass transfer of H2S from the gas or oil phase to the water phase.

New H₂S Scavenger

Successful with 77% - Less Chemical vs. Triazine Treatment

Trial #1 New H₂S Scavenger field results Chemical Consumption to achieve 10 ppm H2S (gal per day) 15 Offshore production 13 system 12 Reduced from 36 ppm to 10 ppm H_2S 9 5.42 lbs (2.46 kg) H₂S removed per day 6 Production 3 3 BOPD 370 1,800 BWPD 0 **Triazine Treatment** New H₂S 22,400 MCF gas/day

Program

Scavenger

New H₂S Scavenger

Reduced the H₂S Level by ~50% vs. Triazine Treatment

- New H₂S Scavenger field results
 0.37 lbs (0.17 kg) H₂S removed per day
- Production
 - 12 BOPD
 - 120 BWPD
 - 12MCF gas/day
- Double the performance at equivalent cost

Trial #2

New H₂S Scavenger Temperature Stability as Product

Temperature	Shelf-life
25 °C (77 °F)	> 2 yr
50 °C (122 °F)	> 2 yr
150 °C (302 °F)	> 6 hr

New H₂S Scavenger Miscible with a Wide Range of Solvents

Solvent	Miscibility
Methanol	Complete
Ethanol	Complete
Isopropanol	Complete
Ethylene Glycol	Complete
Propylene Glycol	Complete
Monoethylene Glycol Monobutylether	Complete
Diethylene Glycol Monobutylether	Complete

New H₂S Scavenger Chemic al Additive Compatibility

Additive	New H ₂ S Scavenger Impact or Effect
Corrosion Inhibitors	
Cationics / water soluble	None
Phosphonates	None
Anionics	None
Dimer / Trimer Acid	None
Anti-scalants	None
Oxygen Scavengers	
Sodium / Ammonium Bisulfite	Incompatible
Erythorbate / Erythorbic Acid	Compatible

New H₂S Scavenger Materia Compatibility

Material	Rating	
Ethylene Propylene (EPDM)	A-Excellent	A = Excellent
HDPE	A-Excellent	B = Good – Minor
Neoprene (CR)	A-Excellent	effect, slight discoloration
Polypropylene (PP)	A-Excellent	C – Eair Moderate
PVC	A-Excellent	effect, not
CPVC	A-Excellent	recommended for continuous use.
Teflon (PTFE)	A-Excellent	Softening, loss of
Viton	A-Excellent	occur
Buna-N	B-Good	D = Severe Effect, not
Hypalon	B-Good	recommended for ANY
Nitrile (NBR)	B-Good	use

New H₂S Scavenger Metal Compatibility

Material	Corrosion Rate (mpy) at 50 °C	Rating
Stainless Steel (304SS)	<0.1	A-Excellent
Stainless Steel (316SS)	<0.1	A-Excellent
Carbon Steel (C1018)	0.96	B-Good
N80	1.02	B-Good

A = Excellent, no corrosion (0 - 0.1 mpy)

- **B** = Good Minor corrosion (0.1 2.0 mpy)
- C = Fair Moderate corrosion (2.0 5.0 mpy)

D = Severe corrosion (>5.0 mpy)

New H₂S Scavenger vs.Triazine Summary

	New H ₂ S Scavenger	Triazine
High Temperature Stability (>85° C)	Yes	No
Non-scaling	Yes	No
Scavenging is pH independent	Yes	No
Non-corrosive	Yes	Yes
Downhole injection	Yes	No

Summary of Mass Transfer Model and Prediction

- New Scavenger Effectively Reduced H₂S in Production Systems
 - Downhole injection preferred for maximum benefit
 - Increased contact time
- H₂S Scavenging Model Indicated Mass Transfer is Rate-Determining
 - Hatta numbers and Enhancement Factors show an intermediate scavenging scenario
 - Some scavenging in the film
 - Additional scavenging in the bulk water
- Scavenging Model can Assist in Predicting Performance Efficacy
 - Similar values for different well conditions are fit reasonably
 - Production Rates required
 - Injection points to analysis point distance is required (reasonable approximation)
- Further....
 - simplified reaction model and algorithm has been developed to model and predict the scavenging efficiency and predictably optimize chemical dose rate.....
- in order to.....
 - understanding the phenomenological kinetic equations for the scavenger of choice is required and, in particular, the
 rate in the phase or phase(s) it scavenges is important. This will dictate the complexity of the model used and the role
 mass transfer has on each of the potentially competing rates

Thank you

Acknowledgement

Dr. Kevin Janak – Application Technology Manager

Contacts

Commercial

Enrique Santelli – Lonza Argentina - Enrique.santelli@lonza.com

Technical

Cleide Costa – Lonza South America – <u>Cleide.costa@lonza.com</u>